LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

XMU-MP-1 protects heart from ischemia/reperfusion injury in mice through modulating Mst1/AMPK pathway.

Photo from wikipedia

Up to now, there are few therapeutic approaches available to protect heart from ischemia/reperfusion (I/R) injury. The present work was designed to examine the protection of XMU-MP-1, an inhibitor of… Click to show full abstract

Up to now, there are few therapeutic approaches available to protect heart from ischemia/reperfusion (I/R) injury. The present work was designed to examine the protection of XMU-MP-1, an inhibitor of mammalian sterile 20-like kinase 1 (Mst1), against myocardial I/R injury in mice and investigate the underlying molecular mechanisms. The wild-type and Mst1 (-/-) mice were exposed to I/R injury and treated with XMU-MP-1 immediately after reperfusion. Treatment with XMU-MP-1 reduced infarct size, attenuated apoptosis and necrosis, and preserved cardiac function of I/R mice. XMU-MP-1 mitigated mitochondrial dysfunction in myocardium of I/R mice. In addition, XMU-MP-1 stimulated M2 macrophage polarization and suppressed inflammation in myocardium of I/R mice. Mst1 deficiency had similar benefits on myocardial I/R injury and XMU-MP-1 treatment did not provide further protection against I/R injury in Mst1 (-/-) mice. Both treatment with XMU-MP-1 and Mst1 deficiency promoted the activation of AMPKα in myocardium of I/R mice. More importantly, administration of Compound C (a specific AMPK signaling blocker) blunted the protective effects of XMU-MP-1 on myocardial I/R injury. Collectively, reperfusion therapy with XMU-MP-1 mitigated myocardial I/R injury and preserved myocardial function in mice through modulating Mst1/AMPK pathway.

Keywords: injury; mst1; mice; heart ischemia; xmu; reperfusion

Journal Title: European journal of pharmacology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.