LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radiation dose optimization potential of deep learning-based reconstruction for multiphase hepatic CT: A clinical and phantom study.

Photo by usgs from unsplash

PURPOSE This clinical and phantom study aimed to evaluate the impact of deep learning-based reconstruction (DLR) on image quality and its radiation dose optimization capability for multiphase hepatic CT relative… Click to show full abstract

PURPOSE This clinical and phantom study aimed to evaluate the impact of deep learning-based reconstruction (DLR) on image quality and its radiation dose optimization capability for multiphase hepatic CT relative to hybrid iterative reconstruction (HIR). METHODS Task-based image quality was assessed with a physical evaluation phantom; the high- and low-contrast detectability of HIR and DLR images were computed from the noise power spectrum and task-based transfer function at five different size-specific dose estimate (SSDE) values in the range 5.3 to 18.0-mGy. For the clinical study, images of 73 patients who had undergone multiphase hepatic CT under both standard-dose (STD) and lower-dose (LD) examination protocols within a time interval of about four-months on average, were retrospectively examined. STD images were reconstructed with HIR, while LD with HIR (LD-HIR) and DLR (LD-DLR). SSDE, quantitative image noise, and contrast-to-noise ratio (CNR) were compared between protocols. The noise magnitude, noise texture, streak artifact, image sharpness, interface smoothness, and overall image quality were subjectively rated by two independent radiologists. RESULTS In phantom study, the high- and low-contrast detectability of DLR images obtained at 5.3-mGy and 7.3-mGy, respectively, were slightly higher than those obtained with HIR at the STD protocol dose (18.0-mGy). In clinical study, LD-DLR yielded lower image noise, higher CNR, and higher subjective scores for all evaluation criteria than STD (all, p ≤ 0.05), despite having 52.8% lower SSDE (8.0 ± 2.5 vs. 16.8 ± 3.4-mGy). CONCLUSIONS DLR improved the subjective and objective image quality of multiphase hepatic CT compared with HIR techniques, even at approximately half the radiation dose.

Keywords: multiphase hepatic; dlr; image; phantom study

Journal Title: European journal of radiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.