LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steering hydrogen evolution in CO2 electroreduction through tailoring various co-catalysts

Photo by elevatebeer from unsplash

Abstract Electrochemical CO2 reduction reaction (CO2RR) is a sustainable approach to producing carbon-neutral fuels when combined with renewable energies. Besides the emphatic consideration of developing efficient catalysts, a suitable conductive… Click to show full abstract

Abstract Electrochemical CO2 reduction reaction (CO2RR) is a sustainable approach to producing carbon-neutral fuels when combined with renewable energies. Besides the emphatic consideration of developing efficient catalysts, a suitable conductive carbon agent served as co-catalyst with a low activity toward the competitive hydrogen evolution reaction (HER), is also highly needed. However, there have been limited studies focused on the investigation of co-catalyst during CO2RR, especially on their HER behavior. We herein explored the HER of various co-catalyst, i.e., acetylene black (AB), carbon black (CB) and graphite flake (GF) as well as carbon nanotube (CNT), and their composites with sub-25 nm Ag nanowires (NWs) as catalysts. GF and CB exhibit a higher activity toward CO2RR and HER, respectively. In contrast, CB/Ag NWs achieve the highest Faraday efficiency and partial current density for CO2RR, whereas CNT/Ag NWs prefer HER. The differences in HER suggest a critical influence of co-catalyst and this study points to a better guidance on the selection of co-catalyst for CO2RR.

Keywords: co2rr; hydrogen evolution; co2; catalyst

Journal Title: Electrochemistry Communications
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.