LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An appropriate reference and counter electrode in an all-solid-state battery using NASICON-structured solid electrolyte

Photo by heftiba from unsplash

Abstract Anti-NASICON-structured Fe2(MoO4)3 (FMO) thin films are formed on NASICON-structured LATP solid-state electrolyte by pulsed laser deposition, and their electrochemical properties are investigated. The FMO thin films operate at 3.0 V… Click to show full abstract

Abstract Anti-NASICON-structured Fe2(MoO4)3 (FMO) thin films are formed on NASICON-structured LATP solid-state electrolyte by pulsed laser deposition, and their electrochemical properties are investigated. The FMO thin films operate at 3.0 V flat voltage vs. Li/Li+ within the potential window of LATP. The apparent diffusion coefficient of the FMO thin film on LATP is almost consistent with that measured in a conventional organic liquid electrolyte (0.5–1.2 × 10-12 cm2 s−1) and stable and fast charge–discharge reactions are realized. These results indicate that FMO/LATP is appropriate as a reference and counter electrode for all-solid-state batteries using NASICON-structured LATP. Combining crystalline electrode-solid electrolytes with a similar framework structure at relatively low temperatures will play an important role in realizing reversible electrode reactions. An all-solid-state battery, FMO/LATP/LiCoO2, is developed to apply the FMO as a reference and counter electrode, and the SSB operates at 1.0 V without visible capacity fading.

Keywords: nasicon structured; solid state; counter electrode; reference counter

Journal Title: Electrochemistry Communications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.