LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

Photo from archive.org

Titanium dioxide/reduced graphene oxide (TiO2-rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate… Click to show full abstract

Titanium dioxide/reduced graphene oxide (TiO2-rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO2, GO was synthesized from graphite, adsorbed onto TiO2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO2-rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

Keywords: materials lithium; rgo; tio2 rgo; rgo composites; lithium ion

Journal Title: Electrochimica Acta
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.