Abstract To facilitate the design and construction of complex functional materials, the field of molecular assembly can learn from the well-established field of catalysis including its branches such as electrocatalysis… Click to show full abstract
Abstract To facilitate the design and construction of complex functional materials, the field of molecular assembly can learn from the well-established field of catalysis including its branches such as electrocatalysis and photo-electrocatalysis. In this study, we establish a “photo-electro-catassembly” strategy to repeatedly fabricate two-dimensional molecular assemblies on electrode surface by learning from the concept of photo-electrocatalysis. With the rational design of the linear diacetylene building blocks, Au electrode surface itself and the thiol-functionalized electrode both can assist the formation of two-dimensional assemblies and their subsequent covalent stabilization through the polymerization of diacetylene groups. Nevertheless, when using the Au electrode surface as a direct template, the polymerized product would be hardly removed from the electrode due to the strong synergistical interactions through multivalent Au-S bonds. By contrast, when using the thiol-functionalized electrode as an indirect template, the diacetylene building block forms a well-ordered second layer over the thiol monolayer due to the solvent-phobic and solvent-philic effects. After photo-polymerization, the polymerized product can still be removed from the electrode along the electro-induced removal of the thiol monolayer. Driven by electricity and photoirradiation, the thiol-functionalized electrode assists the combined process of assembly and photo-polymerization as a “photo-electrocatassembler”, and it works repeatedly to produce covalently stabilized two-dimensional assemblies.
               
Click one of the above tabs to view related content.