LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sub-10-nm Graphene Nanoribbons with Tunable Surface Functionalities for Lithium-ion Batteries

Photo from wikipedia

Abstract A systematic study to reveal the relationship between the surface oxygen-containing functionalities of sub-10-nm GNRs and their electrochemical properties for lithium-ion batteries has been presented. Sub-10-nm GNRs with controlled… Click to show full abstract

Abstract A systematic study to reveal the relationship between the surface oxygen-containing functionalities of sub-10-nm GNRs and their electrochemical properties for lithium-ion batteries has been presented. Sub-10-nm GNRs with controlled oxygen-containing groups were synthesized by a green and scalable intercalation-assisted unzipping SWCNTs. Detailed materials characterizations including TEM, XRD, Raman and XPS indicate that KNO 3 could be an effective intercalation agent to facilitate the SWCNT unzipping by reducing the strong Van der Waals force attraction of bundled SWCNT. The levels of surface functionalities of sub-10-nm GNR were tuned by carefully controlling the KMnO 4 concentration during the unzipping process. The electrochemical analysis suggests that the as-produced sub-10-nm GNR with 31.4 atomic percent (atom %) oxygen-containing functional groups showed the highest capacity of 490.4 mAh g −1 after 100 cycles. This work proposed that sub-10-nm GNRs with appropriate oxygen-functional groups can be a promising electrode material for high performance lithium-ion batteries.

Keywords: oxygen; surface functionalities; ion batteries; lithium ion

Journal Title: Electrochimica Acta
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.