LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting Pt oxygen reduction reaction activity and durability by carbon semi-coated titania nanorods for proton exchange membrane fuel cells

Photo from wikipedia

Abstract We report a simple, scalable approach to improve interfacial characteristics of carbon semi-coated titania nanorods-supported-Pt with superior peak power density as compared to Pt/C with thin metal loading of… Click to show full abstract

Abstract We report a simple, scalable approach to improve interfacial characteristics of carbon semi-coated titania nanorods-supported-Pt with superior peak power density as compared to Pt/C with thin metal loading of 150 μg cm−2. Thin layer of carbon coated titania nanorod is synthesized by hydrothermal method. Carbon coated titania nanorods boosts the Pt oxygen reduction reaction activity than carbon. The crystal structure, dispersion of platinum nanoparticles, surface morphology and oxidation state are studied by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. Studies using conventional three electrode setup shows that Pt/CCT-30 retains 48% of initial electrochemical surface area even after 40,000 potential cycles between 0.6 and 1.2 V. The solid fuel cell mode accelerated stress durability studies show that thin layer of carbon coated titania nanorods-Pt (Pt/CCT 30) significantly enhances stability and preserves 75% of initial fuel cell performance even after 10,000 potential cycles between 1 and 1.5 V. In comparison, only 20% of performance is retained for Pt supported on carbon after 3000 cycles.

Keywords: titania nanorods; carbon; carbon semi; coated titania; semi coated; fuel

Journal Title: Electrochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.