LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hot electron-induced electrochemiluminescence of calcein and calcein-Tb(III) complex at disposable oxide-covered aluminum and polyvinyl butyral-carbon black/metal composite electrodes in aqueous solutions

Photo by majidbeheshti from unsplash

Abstract Hot electron-induced electrochemiluminescence (HECL) of calcein and calcein-Tb(III) complex was generated at oxide-covered aluminum electrode during cathodic pulse polarization. The excitation of calcein as a molecule or as a… Click to show full abstract

Abstract Hot electron-induced electrochemiluminescence (HECL) of calcein and calcein-Tb(III) complex was generated at oxide-covered aluminum electrode during cathodic pulse polarization. The excitation of calcein as a molecule or as a ligand is based on subsequent one-electron oxidation and reduction steps by oxidizing radicals and solvated electrons. During HECL excitation of calcein-Tb(III) solution a reaction product of the calcein is formed that also enables the photoexcitation of Tb(III) via the formed ligand derivative by ligand-sensitized mechanism. The determination of low concentrations of calcein with aluminum electrodes was complicated by a relatively strong background electroluminescence originating from the Al2O3-layer. Polyvinyl butyral-carbon black composite electrodes coated on brass were fabricated to solve this problem and a fifty-fold lower background emission was obtained for these novel composite electrodes in comparison to that of oxide-covered 99.9% pure aluminum electrodes. The obtained detection limits were 3.2·10−10 M for calcein and 6.4·10−9 M for calcein-Tb(III) at the present composite electrodes. These species could potentially be utilized as electrochemiluminescent labels in bioaffinity assays.

Keywords: calcein calcein; calcein iii; oxide covered; composite electrodes; aluminum; calcein

Journal Title: Electrochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.