LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2

Photo by campaign_creators from unsplash

Abstract Urea oxidation is the key limiting reaction in energy conversion devices based on this molecule. Ni-based catalysts are widely used to catalyze this reaction via the intermediate formation of… Click to show full abstract

Abstract Urea oxidation is the key limiting reaction in energy conversion devices based on this molecule. Ni-based catalysts are widely used to catalyze this reaction via the intermediate formation of reactive NiOOH from nickel hydroxide. In this study, β Ni(OH)2 urea oxidation activity is compared to that of Ni/Ni(OH)2. Electrochemical active surface area, exchange current density, rate constant, and capacitance are estimated for these catalysts to mechanistically probe the reaction. A quantitative electrochemical analysis of urea oxidation on these catalyst surfaces yields important reaction parameters. The reaction orders of β Ni(OH)2 with respect to KOH and (NH2)2CO are 1.22 and 0.26, respectively, at a kinetically-controlled potential of 1.43 V vs. RHE. The reaction order with respect to KOH decreases gradually with potential and it is almost constant with urea. The similar trends in reaction order are observed with Ni/Ni(OH)2. Electrochemical impedance measurements displayed lower charge-transfer resistance of β Ni(OH)2 indicative of faster urea oxidation kinetics. It is observed that at the potential of 1.43 V, the charge transfer resistance of β Ni(OH)2 (87.3 Ω cmECSA2) lowered by a factor of ∼1.23 compared to Ni/Ni(OH)2 (107.6 Ω cmECSA2). The electrochemical surface area normalized heterogeneous rate constant of β Ni(OH)2 is ∼2 times higher than that of Ni/Ni(OH)2, in line their high intrinsic urea oxidation activity, capacitance and higher electrochemical phase stability. Moreover, the electrochemical chemical mechanism is observed on both catalysts in support with earlier report [ 1 ].

Keywords: oxidation reaction; investigation urea; urea oxidation; electrochemical investigation; reaction

Journal Title: Electrochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.