LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Origin of efficient oxygen reduction reaction on Pd monolayer supported on Pd-M (M=Ni, Fe) intermetallic alloy

Photo from wikipedia

Abstract Intermetallic alloy has become a hot topic in heterogeneous catalysis due to improved activity and stability. We report here the results of Pd monolayer supported on face-centered tetragonal (fct)… Click to show full abstract

Abstract Intermetallic alloy has become a hot topic in heterogeneous catalysis due to improved activity and stability. We report here the results of Pd monolayer supported on face-centered tetragonal (fct) Pd-M (M = Ni or Fe) intermetallic alloy as cathode materials by first principle calculations. Adsorbed O2 is found to undergo hydrogenation process into OOH instead of direct dissociative mechanism. The oxygen reduction reaction (ORR) proceeds via four-electron transfer pathway on both surfaces. The enhanced activities are ascribed to moderate adsorption strength for ORR intermediates due to compression strain and substrate electron transfer. The dissolution potential analysis indicates that both Pd/PdNi(111) and Pd/PdFe(111) are stable under operating condition. Gibbs free energy analysis and barrier calculations suggest that the proposed Pd monolayer structures are promising for cathode material. These results can be useful in designing intermetallic Pd-M alloy as ORR electrocatalysts.

Keywords: intermetallic alloy; alloy; monolayer supported; reduction reaction; oxygen reduction

Journal Title: Electrochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.