Abstract There are few reports on the electrochemical detection of ochratoxin A (OTA) using chemically modified electrode owing to the OTA poor electrochemical activity and strong fouling effect towards electrode… Click to show full abstract
Abstract There are few reports on the electrochemical detection of ochratoxin A (OTA) using chemically modified electrode owing to the OTA poor electrochemical activity and strong fouling effect towards electrode surface. In this study, a novel nanosensor based on two-dimensional (2D) layered black phosphorene (BP) was successfully developed for the simple voltammetric detection of OTA in grape juice and red wine samples. The BP modified nanosensor showed a good linear electrochemical response towards OTA in a concentration range of 0.3–10 μg/mL with a detection limit of 0.18 μg/mL (S/N = 3) under the optimal conditions. A mechanism for the electrocatalytic oxidation of OTA was proposed and verified by density functional theory calculations that the oxidation of OTA is an irreversible electrochemical response with an adsorption-controlled process, and the nitrogen atom of the amide is oxidized to N+O− with two protons and two electrons. The proposed electrochemical sensor demonstrated good electrochemical stability, superior anti-fouling property and excellent sensitivity towards OTA detection. A satisfactory practicability with recoveries between 98.8% and 103.3% was obtained in real samples determination. This work puts forward a new sensing platform based on the two-dimensional layered graphene-like nanosensor for the electrochemical determination of mycotoxins in edible agricultural food.
               
Click one of the above tabs to view related content.