LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Understanding the electrochemical lithiation/delithiation process in the anode material for lithium ion batteries NiFeOPO4/C using ex-situ X-ray absorption near edge spectroscopy and in-situ synchrotron X-ray

Photo from wikipedia

Abstract Nickel iron (III) oxyphosphate NiFeOPO4 (NFP) was successfully synthesized using solid-state route and modified with carbon layer using sucrose as carbon source. The electrochemical performances of the composite anode… Click to show full abstract

Abstract Nickel iron (III) oxyphosphate NiFeOPO4 (NFP) was successfully synthesized using solid-state route and modified with carbon layer using sucrose as carbon source. The electrochemical performances of the composite anode material NiFeOPO4/C (NFP/C) vs. Li+/Li0 were investigated at C/5 current rate and in a wide voltage window 0.01–3.0 V. During the first lithiation at C/5, NFP/C was able to uptake more than six lithium ions into the structure delivering a capacity of 736.63 mAh g−1. In this study, NFP phosphate was characterized using XRD, SEM, EDS mapping, and Raman spectroscopy. The first cycle was investigated using high energy spectroscopies including: in-situ synchrotron X-Ray Diffraction and ex-situ X-ray Absorption Near Edge Spectroscopy (XANES). In-situ synchrotron XRD revealed that the crystal structure of NFP/C undergoes structural transformations leading to lower degrees of crystallinity during the first lithiation. Ex-situ XANES measurements disclosed that the redox reaction of iron and nickel during the first lithiation and delithiation is reversible.

Keywords: lithiation; ray; situ synchrotron; spectroscopy

Journal Title: Electrochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.