LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity

Photo from wikipedia

Abstract A series of highly microporous carbon materials was produced by carbonization of a triazine-based covalent organic polymer (TCOP) followed by carbonization and CO2 physical activation. The N-containing porous COP… Click to show full abstract

Abstract A series of highly microporous carbon materials was produced by carbonization of a triazine-based covalent organic polymer (TCOP) followed by carbonization and CO2 physical activation. The N-containing porous COP was prepared from easily available economic monomer precursors via a simple Friedel-Crafts reaction, which produced a predominantly microporous structure with a high surface area. Carbonization at 600–900 °C produced predominantly microporous carbons with a narrow pore size distribution in the range of 0.5–1.5 nm. Upon further activation using CO2, more micropores were formed, accompanied by an increase in the surface area (to 2003 m2 g−1) and the nitrogen level in the carbon structure was maintained at ca. 2 wt%. The electrochemical properties of the samples were measured by employing a three-electrode system with 6 M KOH electrolyte. Among the prepared carbon samples, the electrode fabricated using the carbon activated at 900 °C (AC-900) had a specific capacitance of 278 F g−1 at a current density of 1 A g−1, which is significantly higher than that of a commercial activated carbon (130 F g−1) and ranks among the highest reported so far. This improved performance was attributed to the highly microporous structure of the nitrogen-doped carbon with a narrow pore size distribution.

Keywords: based covalent; carbon; organic polymer; triazine based; covalent organic

Journal Title: Electrochimica Acta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.