LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A facile synthesis of graphene nanoribbon-quantum dot hybrids and their application for composite electrolyte membrane in direct methanol fuel cells

Photo by walloftheo from unsplash

Abstract In this work, we report the concept of synthesizing graphene nanoribbon-graphene quantum dot (GNR-GQD) hybrids with even grafting of GQD on GNR sheet in a facile single step process… Click to show full abstract

Abstract In this work, we report the concept of synthesizing graphene nanoribbon-graphene quantum dot (GNR-GQD) hybrids with even grafting of GQD on GNR sheet in a facile single step process under ultrasonication in chlorosulfonic acid. Further, diazotization route is followed for the preparation of 4-benzenediazonium sulfonate precursor to sulfonate both GNR and GQD to form sulfonated graphene nanoribbons-sulfonated graphene quantum dots (sGNR-sGQD) nanohybrids. Synergistic and structure dependent effect of nanohybrids is seen via its dispersion in sulfonated poly(ether ether ketone) (sPEEK) to form nanocomposite membrane. sPEEK/sGNR-sGQD (1.5 wt %) nanocomposite membrane shows remarkable direct methanol fuel cell (DMFC) performance compared to pristine sPEEK and Nafion 117 with 40% increment in peak power density along with higher durability up to 100 h due to better physicochemical properties like water uptake, ion exchange capacity, proton conductivity, and reduced methanol crossover to suggest its potential which includes diverse membrane applications.

Keywords: quantum dot; graphene nanoribbon; methanol fuel; graphene; membrane; direct methanol

Journal Title: Electrochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.