LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface functionalization of wafer-scale two-dimensional WO3 nanofilms by NM electrodeposition (NM = Ag, Pt, Pd) for electrochemical H2O2 reduction improvement

Photo from wikipedia

Abstract Surface functionalization of two-dimensional (2D) WO3 nanofilms by noble metal (NM) nanoparticles (NM = Ag, Pt and Pd) was successfully achieved for the first time via combination of the atomic… Click to show full abstract

Abstract Surface functionalization of two-dimensional (2D) WO3 nanofilms by noble metal (NM) nanoparticles (NM = Ag, Pt and Pd) was successfully achieved for the first time via combination of the atomic layer deposition (ALD) process and electrochemical deposition method. Deposited NM nanoparticles were uniformly in the particle size and homogeneously dispersed on the surface of 2D WO3. They represented electrochemically active metal-semiconductor hybrid nanocomposites with the larger electroactive area, and consequently, substantially enhanced the electrochemical H2O2 detection of the device based on functionalized 2D WO3 nanofilms. Functionalization by Ag was found to be more efficient compared to the same functionalization by Pt and Pd nanoparticles. Particularly, Ag200-WO3 nanofilms exhibited the best electrochemical performance with a high sensitivity of 282 μA mM cm−2, extremely wide linear H2O2 concentrations range from 0.2 μM to 33.6 mM, a low detection limit of 0.1 μM, fast response time of 2 s and an excellent selectivity and long-term stability. Surface functionalization by NM nanoparticles approach has clearly demonstrated the great potential in the development of hybrid nanostructured electrode for various devices with enhanced electrochemical capabilities.

Keywords: surface functionalization; functionalization; h2o2; wo3 nanofilms

Journal Title: Electrochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.