LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and performance analysis of branched microfluidic fuel cells with high utilization

Photo from wikipedia

Abstract Microfluidic fuel cells (MFCs) are effective energy conversion devices in microscales due to their simplicity and high energy density as they are based on laminar co-flow of reactants in… Click to show full abstract

Abstract Microfluidic fuel cells (MFCs) are effective energy conversion devices in microscales due to their simplicity and high energy density as they are based on laminar co-flow of reactants in microchannels without a separator. However, fuel utilization at practical flow rates remains as one of the important challenges. In this study, a two-dimensional (2D) model is developed based on Brinkman equations for flow, Fick's law for mass transport and Butler-Volmer equations for reaction kinetics to study MFCs and address the effects of geometric and operation parameters on the performance and fuel utilization. Commercial finite-element software, COMSOL, is used to solve coupled equations and to analyze the performance of MFCs for different Peclet numbers, concentrations of reactants and geometric variables. According to simulation results, the 2D model compares very well with the three-dimensional model based on Navier-Stokes equations and with the experimental data reported in the literature. Moreover, the model is used for the analysis of the proposed branched-channel design of microfluidic cells that improves the fuel utilization and power output of the MFC.

Keywords: fuel cells; performance; fuel; model; utilization; microfluidic fuel

Journal Title: Electrochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.