LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mn-doped Ni-coordination supramolecular networks for binder-free high-performance supercapacitor electrode material

Photo from wikipedia

Abstract A new Mn-doped coordination supramolecular network (CSN) was synthesized on nickel foam directly by a simple one-step hydrothermal method. Compared with the pure CSN electrode (∼2.46 C cm−2 at 10 mA cm−2), this… Click to show full abstract

Abstract A new Mn-doped coordination supramolecular network (CSN) was synthesized on nickel foam directly by a simple one-step hydrothermal method. Compared with the pure CSN electrode (∼2.46 C cm−2 at 10 mA cm−2), this Mn-doped binder-free electrode showed an ultrahigh areal capacity (∼8.12 C cm−2 at 10 mA cm−2). In addition, when the current density increased from 10 mA cm−2 to 50 mA cm−2, it had a good rate capability with 73.33% capacitance retention. For practicality, an asymmetrical supercapacitor (ASC) was assembled by Activated Carbon (AC) electrode and the Mn-doped CSN electrode. The device not only could achieve a maximum energy density of 3.41 mW h cm−3 at the power density of 44.98 mW cm−3, but also could exhibit excellent stability after 4000 cycles, with the capacitance retention of 90.14%. The above results indicate that the Mn-doped CSNs are promising electrode materials for supercapacitors in energy storage.

Keywords: supercapacitor; doped coordination; electrode; binder free; coordination supramolecular

Journal Title: Electrochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.