LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of rate-limiting step switchover for reversible solid oxide cells in H2/H2O atmosphere

Photo from wikipedia

Abstract Hydrogen-water are the primary reactant-product pair in the fuel electrode of reversible solid oxide cells. A different dependence of polarization resistance on pH2O in fuel cell and electrolysis modes… Click to show full abstract

Abstract Hydrogen-water are the primary reactant-product pair in the fuel electrode of reversible solid oxide cells. A different dependence of polarization resistance on pH2O in fuel cell and electrolysis modes has been proven experimentally, revealing different rate-limiting steps in fuel electrodes in these two modes. Despite extensive studies on solid oxide fuel cells or solid oxide electrolysis cells, existing literature is still hard to interpret this phenomenon. To understand the reaction mechanism of reversible solid oxide cells in H2/H2O atmosphere during current direction switch, we develop an elementary reaction mechanistic model of a nickel-patterned electrode button cell coupling charge transfer reactions, surface heterogeneous chemical reactions, and surface diffusion. We use a two-step hydrogen spillover mechanism, i.e., H(Ni)+O2−(YSZ) ↔ (Ni)+OH−(YSZ) +e− and H(Ni)+OH−(YSZ) ↔ (Ni)+H2O(YSZ)+e−, to describe charge transfer reactions. This model can well interpret this phenomenon, and further, reveal the inherent relationship between the operating condition and cell performance. Model calculation reveals that the limitation of OH−(YSZ) surface coverage (

Keywords: mechanism; oxide cells; reversible solid; rate limiting; solid oxide

Journal Title: Electrochimica Acta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.