LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How solution chemistry affects the electrochemical behavior of cathodes for Mg batteries, a classical electroanalytical study

Photo from wikipedia

Abstract Mo6S8 Chevrel phase (CP) is still the most effective magnesium ions insertion material that was examined in cathodes for rechargeable Mg battery model systems. Its synthesis includes CuMo6S8 as… Click to show full abstract

Abstract Mo6S8 Chevrel phase (CP) is still the most effective magnesium ions insertion material that was examined in cathodes for rechargeable Mg battery model systems. Its synthesis includes CuMo6S8 as an intermediate which undergoes Cu ions leaching. Thereby, CP materials may contain small amounts of copper. CuxMo6S8 undergoes complex magnesium insertion processes that include reversible displacement of copper. We report herein on a study of Cu0.09Mo6S8 electrodes in two electrolyte solutions which are important for secondary Mg batteries: C6H6MgCl/AlCl3/THF (all phenyl complex solutions, APC) and MgTFSI2/MgCl2/DME (Mg imide/chloride/DME solutions, ICD). There systems are ideal playgrounds for studying the nature of complex magnesium insertion processes into inorganic hosts. The analysis reported herein shows how the electroanalytical behavior of CP electrodes is affected by the electrolyte solution identity. For instance, the main Mg ions insertion process from the APC solutions occurs at 160 mV lower than from the ICD ones; the heterogeneous rate constant for charge transfer across the interface are significantly higher in APC solutions; in turn, the conversion processes related to the Cu residue in the CP electrodes are kinetically and thermodynamically favorable in the ICD solutions. As expected, the magnesium solid-state diffusion coefficient was found to be solutions independent. The study demonstrates the sensitivity of electroanalytical tools such as slow scanning rate voltammetry for reflecting fine structural changes during intercalation processes and can be generalized to other systems.

Keywords: solution chemistry; chemistry; study; magnesium; behavior

Journal Title: Electrochimica Acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.