LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ionic conductivity in LixTaOy thin films grown by atomic layer deposition

Photo by henrylim from unsplash

Abstract The material system Li-Ta-O is a promising candidate for thin-film solid-state electrolytes in Li-ion batteries. In the present study, we have varied the Li content x in LixTaOy thin… Click to show full abstract

Abstract The material system Li-Ta-O is a promising candidate for thin-film solid-state electrolytes in Li-ion batteries. In the present study, we have varied the Li content x in LixTaOy thin films grown by atomic layer deposition (ALD) with the aim of improving the Li-ion conductivity. The amorphous films were grown at 225 °C on insulating sapphire and on conductive Ti substrates using tantalum ethoxide (Ta(OEt)5), lithium tert-butoxide (LiOtBu) and water as reactants. The film composition was determined by time-of-flight elastic recoil detection analysis (TOF-ERDA), displaying an almost linear relationship between the pulsed and deposited Li content. The ionic conductivities were determined by in-plane and cross-plane AC measurements, exhibiting an Arrhenius-type behaviour and comparatively weak thickness-dependence. Increasing Li content x from 0.32 to 0.98 increases the film conductivity by two orders of magnitude while higher Li content x = 1.73 results in decreased conductivity. A room-temperature conductivity σRT of ~10−8 S cm−1 is obtained for a 169 nm thick Li0.98TaOy film. The evolution of conductivity and activation energy suggests a competing effect between the concentration and the mobility of mobile Li ions when more Li are incorporated. The compositional dependence of Li transport mechanism is discussed.

Keywords: thin films; grown atomic; atomic layer; lixtaoy thin; conductivity; films grown

Journal Title: Electrochimica Acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.