Abstract The material system Li-Ta-O is a promising candidate for thin-film solid-state electrolytes in Li-ion batteries. In the present study, we have varied the Li content x in LixTaOy thin… Click to show full abstract
Abstract The material system Li-Ta-O is a promising candidate for thin-film solid-state electrolytes in Li-ion batteries. In the present study, we have varied the Li content x in LixTaOy thin films grown by atomic layer deposition (ALD) with the aim of improving the Li-ion conductivity. The amorphous films were grown at 225 °C on insulating sapphire and on conductive Ti substrates using tantalum ethoxide (Ta(OEt)5), lithium tert-butoxide (LiOtBu) and water as reactants. The film composition was determined by time-of-flight elastic recoil detection analysis (TOF-ERDA), displaying an almost linear relationship between the pulsed and deposited Li content. The ionic conductivities were determined by in-plane and cross-plane AC measurements, exhibiting an Arrhenius-type behaviour and comparatively weak thickness-dependence. Increasing Li content x from 0.32 to 0.98 increases the film conductivity by two orders of magnitude while higher Li content x = 1.73 results in decreased conductivity. A room-temperature conductivity σRT of ~10−8 S cm−1 is obtained for a 169 nm thick Li0.98TaOy film. The evolution of conductivity and activation energy suggests a competing effect between the concentration and the mobility of mobile Li ions when more Li are incorporated. The compositional dependence of Li transport mechanism is discussed.
               
Click one of the above tabs to view related content.