LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NaTi2(PO4)3 nanoparticles embedded in double carbon networks as a negative electrode for an aqueous sodium-polyiodide flow battery

Photo from wikipedia

Abstract To demonstrate an aqueous sodium-polyiodide flow battery (SIFB) for the first time, sodium titanium phosphate (NaTi2(PO4)3) was utilized as the negative electrode and I−/I3− couple was adopted as the… Click to show full abstract

Abstract To demonstrate an aqueous sodium-polyiodide flow battery (SIFB) for the first time, sodium titanium phosphate (NaTi2(PO4)3) was utilized as the negative electrode and I−/I3− couple was adopted as the positive redox active species. SIFB not only shows advantages of cost-effectiveness and environmental friendliness based on earth-abundant elements of sodium and iodine, but also exhibits a high energy density due to the high solubility of sodium iodide (~12.3 M at room temperature). Although NaTi2(PO4)3 has several advantages such as high Na-ion conductivity and good structural stability, its use as a negative electrode is limited because of intrinsically low electrical conductivity. In this study, NaTi2(PO4)3 nanoparticles were embedded in double carbon networks comprising internal and external carbon layers. Individual effects by the internal and external carbon networks on the electrochemical performance of NaTi2(PO4)3 were clearly distinguished. With the simultaneous formation of the two carbon networks, a SIFB exhibited outstanding electrochemical performance (86.0 mAh•g−1 at a rate of 7 C) and a long cycle life (93.5% capacity retention after 100 cycles).

Keywords: nati2 po4; negative electrode; sodium; carbon networks

Journal Title: Electrochimica Acta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.