LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen supply management to intensify wastewater treatment by a microbial electrochemical snorkel

Photo by schluditsch from unsplash

The microbial electrochemical snorkel (MES) is a low-cost, low-maintenance technology that could considerably reduce wastewater treatment costs by reducing the need for aeration. An MES is a single electrode. The… Click to show full abstract

The microbial electrochemical snorkel (MES) is a low-cost, low-maintenance technology that could considerably reduce wastewater treatment costs by reducing the need for aeration. An MES is a single electrode. The lower part, in the anoxic zone of the bioreactor, oxidizes organic matter by transferring electrons to the electrode. The upper part, in the oxic zone, releases the electrons by reducing dissolved oxygen. This study gives new insights into the correlation between the MES potential, the concentration of dissolved oxygen and COD abatement, thus enabling practical rules to be extracted for running the MES in optimal conditions, particularly for adjusting the aeration zone and frequency. Here, aeration promoted the cathodic reaction and increased the MES potential to a maximum (0.0 to 0.1 V/SCE). After aeration stopped, the potential dropped to a minimum (< -0.4 V/SCE). With 26 cm high MESs, sequential aeration at the top was not sufficient to support an effective cathodic zone, while aeration at the bottom was detrimental to the formation of the microbial anode. With MESs 48 cm high and aeration set up in the highest quarter, 30 minutes of aeration every 4.5 hours gave potential variations that were stable for weeks. The MESs continued to oxidize organic matter 30 minutes after the aeration had stopped. In this period, the MESs removed 3 to 6.3 times more COD than the control reactors. Increasing the electrode capacitance is therefore suggested as an effective way to further decrease the aeration cost by decreasing the aeration frequency.

Keywords: microbial electrochemical; aeration; wastewater treatment; electrochemical snorkel

Journal Title: Electrochimica Acta
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.