Abstract SnTe is a prototypical topological crystalline insulator, in which the gapless surface state is protected by a crystal symmetry. The hallmark of the topological properties in SnTe is the… Click to show full abstract
Abstract SnTe is a prototypical topological crystalline insulator, in which the gapless surface state is protected by a crystal symmetry. The hallmark of the topological properties in SnTe is the Dirac cones projected to the surfaces with mirror symmetry, stemming from the band inversion near the L points of its bulk Brillouin zone, which can be measured by angle-resolved photoemission. We have obtained the (111) surface of SnTe film by molecular beam epitaxy on BaF 2 (111) substrate. Photon-energy-dependence of in situ angle-resolved photoemission, covering multiple Brillouin zones in the direction perpendicular to the (111) surface, demonstrate the projected Dirac cones at the Γ ¯ and M ¯ points of the surface Brillouin zone. In addition, we observe a Dirac-cone-like band structure at the Γ point of the bulk Brillouin zone, whose Dirac energy is largely different from those at the Γ ¯ and M ¯ points.
               
Click one of the above tabs to view related content.