LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of some physical properties of pure and Co-doped MoO3 synthesized on glass substrates by the spray pyrolysis method

Photo by fiercelupus from unsplash

Abstract Pristine and Cobalt (Co)-doped MoO3 nanofilms were synthesized on glass substrates using the spray pyrolysis method. The nanometric pristine MoO3 films were prepared from the 10−2 M.L-1 solution of… Click to show full abstract

Abstract Pristine and Cobalt (Co)-doped MoO3 nanofilms were synthesized on glass substrates using the spray pyrolysis method. The nanometric pristine MoO3 films were prepared from the 10−2 M.L-1 solution of ammonium molybdate tetrahydrate [(NH4)6Mo7O24,4H2O] in distilled water. Co-doping at 0.5, 0.75 and 1% was achieved by adding cobalt (II) chloride hexahydrate (Cl2CoH12O6) in the pristine solution. The structure and the morphology of the films were investigated by means of X-ray diffraction and atomic force microscopy: two pronounced (020) and (040) peaks corresponding to the orthorhombic structure phase of α-MoO3 were detected. The AFM observations revealed the formation of micro-plates, parallel to the surface plane, with a roughness ranging from 33 nm to 54 nm. Optical properties were investigated through reflectance, transmittance and photoluminescence measurements. The optical band gap, the Urbach energy and the refractive index were deduced from these measurements. The presence of oxygen vacancies was revealed from the interband transitions in the blue and green domains. Co-doped MoO3 nanofilms showed ferromagnetic behavior. The photocatalytic degradation of an aqueous solution of methylene blue (MB) under UV irradiation, in the presence of Co-MoO3 nanomfilms, has been carried out using UV–vis spectrometery: the intensity of the absorption peak recorded at 660 nm decreased with the increase of the UV-illumination time while the color of the initial MB solution was drastically waned.

Keywords: doped moo3; glass substrates; pyrolysis method; spray pyrolysis; synthesized glass

Journal Title: Journal of Electron Spectroscopy and Related Phenomena
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.