LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

De novo composite design based on machine learning algorithm

Photo from wikipedia

Abstract Composites are widely used to create tunable materials to achieve superior mechanical properties. Brittle materials fail catastrophically in the presence of cracks. Incorporating softer constituents into brittle materials can… Click to show full abstract

Abstract Composites are widely used to create tunable materials to achieve superior mechanical properties. Brittle materials fail catastrophically in the presence of cracks. Incorporating softer constituents into brittle materials can alleviate stress concentration, leading to tougher and stronger composites. However, searching for the optimal designs of composites is extremely challenging due to the astronomical number of possible material and geometry combinations. Here, we apply machine learning to a composite system and demonstrate its capacity to accurately and efficiently predict mechanical properties including toughness and strength. The method we used incorporates machine learning techniques to generate optimal designs with orders of magnitude better than the mean properties of the input training data, and at a much lower computational cost compared to exhaustive methods. Additionally, the method can further rebuild the detailed performances of the designs, even when this information is lost in the training process. The results demonstrate the ability of machine learning to search for optimal designs with very limited training data. To demonstrate the application of machine learning to composite design, we optimize a large-scale system not tractable by an exhaustive brute force approach and show that it is a promising tool towards composite design. This work offers a new perspective in the exploration of design spaces and accelerating the discovery of new functional, customizable composites.

Keywords: machine; machine learning; novo composite; composite design; optimal designs

Journal Title: Extreme Mechanics Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.