LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling lattice rotation fields from discrete crystallographic slip bands in superalloys

Photo from wikipedia

Abstract In this work, we investigate the relationship between an intense slip band (ISB) and the zone of large lattice rotations that forms ahead of the tip of the ISB.… Click to show full abstract

Abstract In this work, we investigate the relationship between an intense slip band (ISB) and the zone of large lattice rotations that forms ahead of the tip of the ISB. We develop a crystal plasticity finite element model of a discrete ISB lying within an oligocrystalline assembly and calculate the local crystalline stress and lattice rotation fields generated by the ISB. The calculations demonstrate that, first, a region of severe lattice rotations, commonly referred to as a microvolume, does not form without the ISB, and second, large amounts of accumulated slip in the ISB are required to enlarge the microvolume to sizes and rotation magnitudes observed experimentally. Ahead of the ISB tip, the quintessential plastic zone always forms, but the atypical microvolume forms when non-concentrated and spatially diffuse slip is activated by the ISB-induced stress field. This result suggests that the detrimental ISB/microvolume pair will likely appear in pairs of crystals in which transmission of the slip from the ISB is severely blocked by the grain boundary, a hypothesis that we verify with a few target cases.

Keywords: slip; rotation fields; lattice rotation; modeling lattice; isb

Journal Title: Extreme Mechanics Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.