LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short and medium-term forecasting of cooling and heating load demand in building environment with data-mining based approaches

Photo by campaign_creators from unsplash

Abstract This paper depicted the novel data mining based methods that consist of six models for predicting accurate future heating and cooling load demand of water source heat pump, with… Click to show full abstract

Abstract This paper depicted the novel data mining based methods that consist of six models for predicting accurate future heating and cooling load demand of water source heat pump, with the objective of enhancing the prediction accuracy and the management of future load. The proposed model was developed to ease generalization to other buildings, by making use of readily available measurements of a comparatively small number of variables related to water source heat pump operation in the building environment. The six models are - tree bagger, Gaussian process regression, multiple linear regression, bagged tree, boosted tree and neural network. The input parameter comprised the prescribed period, external climate data and the diverse load conditions of water source heat pump. The output was electrical power consumption of water source heat pump. In this study, simulations were conducted in three sessions - 7-day, 14-day and 1-month from 8th July to 7th August 2016. The forecast precisions of data mining models were measured by diverse indices. The performance indices which were used in assessing the prediction performance were - mean absolute error, coefficient of correlation, coefficient of variation, root mean square error, mean square error and mean absolute percentage error. The mean absolute percentage error results for 7-day future energy demand forecasting from tree bagger, Gaussian process regression, bagged tree, boosted tree, neural network and multiple linear regression were 3.544%, 0.405%, 1.703%, 1.928%, 2.592% and 13.053%, respectively. Moreover, when the proposed data mining model performance was compared with the existing studies, the mean absolute percentage error of 2.515% was found out for the first session, 7-day. The results also showed that the six models were efficient in foreseeing the abnormal behavior and future cooling and heating load demand in the building environment.

Keywords: data mining; mining; error; building environment; load demand

Journal Title: Energy and Buildings
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.