Abstract A strong correlation exists between occupant behaviour and space heating energy use. In particular, the occupancy status (e.g., daytime absence) is known to have a significant influence on residential… Click to show full abstract
Abstract A strong correlation exists between occupant behaviour and space heating energy use. In particular, the occupancy status (e.g., daytime absence) is known to have a significant influence on residential heating load profiles, as well as on cumulative heating energy consumption. In the literature, many occupancy models have been utilised to predict occupancy profiles of individual dwellings as part of the larger residential building stock. However, none of the existing models consider diversity associated with occupancy-integrated archetypes to generate high-temporal resolution heating load profiles. The current paper uses Time Use Survey (TUS) data to develop a high-temporal resolution residential building occupancy model. The key feature of the proposed model, implemented using MATLAB, is the ability to generate stochastic occupancy time-series data for national population subgroups characterised by specific occupancy profiles. It is shown that the results are capable of closely approximating data available from TUS. The developed model can be applied to improve the quality of modelled high-temporal resolution heating load profiles for generic building stock characterised by population subgroups represented by different occupancy-integrated archetypes. A case study is performed on a building stock sample located in London, UK. The developed occupancy model has been implemented in MATLAB and is available for download.
               
Click one of the above tabs to view related content.