Abstract Natural ventilation is a low energy strategy used in many building types. Design approaches are mature but are dependent on variables with high uncertainty, such as the aerodynamic behaviour… Click to show full abstract
Abstract Natural ventilation is a low energy strategy used in many building types. Design approaches are mature but are dependent on variables with high uncertainty, such as the aerodynamic behaviour of purpose provided openings (PPOs), which need improved characterisation. An analytical framework is used to define different types of flow through openings based on the balance of environmental forces that drive flow, and the different flow structures they create. This allows a comprehensive literature review to be made, where different studies and descriptive equations can be compared on a like-for-like basis, and from which clear gaps in knowledge, technical standards, and design data are identified. Phenomena whose understanding could be improved by analysis of existing data are identified and explored. A Statistical Effective Area Model (SEAM) is developed from academic data to estimate the performance of butt hinged openings during the design stage, that accounts for the impact of aspect ratio and opening angle. Its predictions are compared against available empirical data and are found to have a standard error of 1.2 % , which is substantially lower that the 15 - 25 % prediction errors of free area models commonly used in practice. An analytical model is made based on entrainment theory to explain the increase in flow rate that occurs through two aligned openings. This model defines characteristic design parameters and predicts a detrimental impact on the ventilation of the wider space. Finally, an analytical model is created to explain the reduction in discharge coefficient that occurs when a large temperature difference exists across an opening. This model defines novel dimensionless parameters that characterise the flow, and predicts empirical data well, suggesting that is should be integrated into design equations.
               
Click one of the above tabs to view related content.