LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative and qualitative investigation of the fuel utilization and introducing a novel calculation idea based on transfer phenomena in a polymer electrolyte membrane (PEM) fuel cell

Photo from wikipedia

Abstract In this study, fuel utilization (U F ) of a PEMFC have been investigated within transfer phenomenon approach. Description of the U F and fuel consumption measurement is the… Click to show full abstract

Abstract In this study, fuel utilization (U F ) of a PEMFC have been investigated within transfer phenomenon approach. Description of the U F and fuel consumption measurement is the main factor to obtain the U F . The differences between the experimental study and theoretical calculations results in the previous research articles reveal the available theoretical equations should be studied more based on the fundamental affairs of the U F . Hence, there is a substantial issue that the U F description satisfies the principles, and then it can be validated by the experimental results. The results of this study indicate that the U F and power grew by 1.1% and 1%, respectively, based on one degree increased temperature. In addition, for every 1 kPa pressure increment, U F improved considerably by 0.25% and 0.173% in the 40 °C and 80 °C, respectively. Furthermore, in the constant temperature, the power improved by 22% based on one atmospheric growth of the pressure. Results of this research show that the U F has a differential nature, therefore differential equations will be employed to do an accurate theoretical calculation. Accordingly, it seems that the main defect of the theoretical calculation depends on Nernst equation that can be modified by a differential nature coefficient.

Keywords: fuel utilization; calculation; fuel; quantitative qualitative; qualitative investigation

Journal Title: Energy Conversion and Management
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.