LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advanced applications of tunable ferrofluids in energy systems and energy harvesters: A critical review

Photo from wikipedia

Abstract Ferrofluids or Magnetic nanofluids (MNFs) are the suspensions of magnetic nanoparticles and non-magnetic base fluid. The heat transfer performance of a magnetic nano-suspension is influenced by the strength and… Click to show full abstract

Abstract Ferrofluids or Magnetic nanofluids (MNFs) are the suspensions of magnetic nanoparticles and non-magnetic base fluid. The heat transfer performance of a magnetic nano-suspension is influenced by the strength and orientation of an applied magnetic field. The main attraction of these types of nanofluids is that they not only enhance the fluids’ thermophysical properties but also possess both magnetic characteristics like the other magnetic materials and flow ability similar to any other fluids. Such an exclusive feature enables to control heat transfer, fluid flow and movement of the nanoparticles by using the external magnetic fields. This review paper summarises the recent investigations of magnetic nanofluids with the aim of identifying the effects of major parameters on the performance of heat transfer. In addition, this study also acknowledged the novel application of ferrofluids in the electromagnetic energy harvesters, and its challenges as well as the potentiality in the future research.

Keywords: tunable ferrofluids; energy; advanced applications; applications tunable; heat transfer; energy harvesters

Journal Title: Energy Conversion and Management
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.