LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic analysis of transcritical CO2 refrigeration cycle integrated with thermoelectric subcooler and ejector

Photo from wikipedia

Abstract In this paper, the new configuration of transcritical CO2 refrigeration cycle combined with a thermoelectric subcooler and an ejector (TES + EJE) is proposed. The thermoelectric subcooler is installed after the… Click to show full abstract

Abstract In this paper, the new configuration of transcritical CO2 refrigeration cycle combined with a thermoelectric subcooler and an ejector (TES + EJE) is proposed. The thermoelectric subcooler is installed after the gas cooler in the transcritical CO2 refrigeration cycle with an ejector. Comparisons are carried out with the conventional transcritical CO2 refrigeration cycle (BASE), CO2 cycle with a thermoelectric subcooler (TES) and CO2 cycle with an ejector (EJE). Maximum cooling coefficient of performance (COPc) is obtained for the new TES + EJE cycle with a simultaneous optimization of subcooling temperature and discharge pressure. The improved new cycle exhibits higher COPc and lower discharge pressure compared with the other three cycles. Compared with the BASE cycle, the maximum COPc of the TES + EJE cycle is increased by 39.34% and the corresponding optimum discharge pressure is reduced by 8.01% under given operation conditions of 5 °C evaporation temperature and 40 °C gas cooler outlet temperature. The effects of the subcooling temperature, discharge pressure, gas cooler outlet temperature and evaporation temperature on the TES + EJE system performance are also discussed by energy and exergy analysis and results present here.

Keywords: cycle; co2; co2 refrigeration; thermoelectric subcooler; refrigeration cycle; transcritical co2

Journal Title: Energy Conversion and Management
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.