LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling

Photo from wikipedia

© 2020 Elsevier Ltd Catalyst layer (CL) is the core electrochemical reaction region of proton exchange membrane fuel cells (PEMFCs). Its composition directly determines PEMFC output performance. Existing experimental or… Click to show full abstract

© 2020 Elsevier Ltd Catalyst layer (CL) is the core electrochemical reaction region of proton exchange membrane fuel cells (PEMFCs). Its composition directly determines PEMFC output performance. Existing experimental or modeling methods are still insufficient on the deep optimization of CL composition. This work develops a novel artificial intelligence (AI) framework combining a data-driven surrogate model and a stochastic optimization algorithm to achieve multi-variables global optimization for improving the maximum power density of PEMFCs. Simulation results of a three-dimensional computational fluid dynamics (CFD) PEMFC model coupled with the CL agglomerate model constitutes the database, which is then used to train the data-driven surrogate model based on Support Vector Machine (SVM), a typical AI algorithm. Prediction performance shows that the squared correlation coefficient (R-square) and mean percentage error in the test set are 0.9908 and 3.3375%, respectively. The surrogate model has demonstrated comparable accuracy to the physical model, but with much greater computation-resource efficiency: the calculation of one polarization curve will be within one second by the surrogate model, while it may cost hundreds of processor-hours by the physical CFD model. The surrogate model is then fed into a Genetic Algorithm (GA) to obtain the optimal solution of CL composition. For verification, the optimal CL composition is returned to the physical model, and the percentage error between the surrogate model predicted and physical model simulated maximum power densities under the optimal CL composition is only 1.3950%. The results indicate that the proposed framework can guide the multi-variables optimization of complex systems.

Keywords: surrogate model; data driven; maximum power; model; optimization; driven surrogate

Journal Title: Energy Conversion and Management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.