LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolutionary multi-task optimization for parameters extraction of photovoltaic models

Photo from wikipedia

Abstract As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required,… Click to show full abstract

Abstract As the demand for solar energy increases dramatically, the optimization and control of photovoltaic systems become increasingly important, accurate and reliable parameter identification of photovoltaic models is always required, which proposes an urgent need for accurate and robust algorithms. To this end, many heuristic algorithms have been proposed to extract the parameters of different photovoltaic models. However, they only extract the parameters of one model in a single run, which is inconsistent with the human ability to solve multiple tasks simultaneously and ignores the useful information derived from different models. Therefore, in this paper an evolutionary multi-task optimization algorithm is proposed to extract the parameters of multiple different photovoltaic models simultaneously. To be specific, the helpful information found by the population is transferred through the cross-task crossover to improve the performance in terms of solution quality and convergence rate of the population. The proposed algorithm is evaluated by extracting the parameters of three different models simultaneously, i.e., single diode, double diode, and photovoltaic module model. Comprehensive results demonstrate that the proposed algorithm has better performance with respect to the accuracy and robustness in comparison with other state-of-the-art algorithms.

Keywords: multi task; evolutionary multi; photovoltaic models; photovoltaic; task optimization

Journal Title: Energy Conversion and Management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.