LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink

Photo from wikipedia

Abstract Nowadays, photovoltaic panels have been known as effective devices to harness solar energy. These panels mainly convert the UV and visible areas of the solar spectrum into electricity and… Click to show full abstract

Abstract Nowadays, photovoltaic panels have been known as effective devices to harness solar energy. These panels mainly convert the UV and visible areas of the solar spectrum into electricity and the rest of the energy is dissipated. One of the favorable methods to take advantage of such dissipated heat is to combine thermoelectric generators (TEG) utilizing the IR area of the solar radiation with photovoltaic panels. Having the different and opposite impact on the efficiency of thermal photovoltaic cells (PV/T) and thermoelectric generators (TEG), the system operating temperature appears as a critical parameter in the productivity of a PV/T-TEG hybrid unit. In the present study, a novel heat sink for a PV/T-TEG hybrid system is introduced. The effectiveness of simultaneous usage of the Co3O4/water nanofluid and the improved phase change material (paraffin wax/Alumina powder) as a cooling method on the performance of the PV/T-TEG is examined throughout an experimental study. Then, the overall electrical, thermal and exergy efficiency of such a system is compared to the units with divers working fluids including water and 0.25%, 0.5%, and 1% nanofluid and the unit consisting of 1% nanofluid with non-enhanced PCM cooling method. The results reveal that using 1% nanofluid with enhanced PCM, as a cooling method, would improve the overall electrical efficiency by 12.28% compared to water cooling technique. Also, an increase of 11.6% in the exergy efficiency of the PV/T-TEG is observed in comparison with PV/T-TEG with the water cooling method. Hence, it could be concluded that the combination of this unit could contribute to harnessing solar energy more efficiently, compared to solo photovoltaic panels.

Keywords: phase change; heat; change material; cooling method; photovoltaic; heat sink

Journal Title: Energy Conversion and Management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.