LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Can whole building energy models outperform numerical models, when forecasting performance of indirect evaporative cooling systems?

Photo from wikipedia

Abstract This paper presents a whole building energy modelling work incorporating a state-of-the-art indirect evaporative cooling system. The model is calibrated and validated with real-life empirical data, and is capable… Click to show full abstract

Abstract This paper presents a whole building energy modelling work incorporating a state-of-the-art indirect evaporative cooling system. The model is calibrated and validated with real-life empirical data, and is capable of representing actual performance of the system with high reliability. The investigated system is a novel super-performance Dew Point Cooler (DPC) with a guideless and corrugated Heat and Mass Exchanger (HMX). The DPC is modelled as part of the whole building energy model through detailed description of system and building characteristics at source code level. The developed model has been simulated in all different climates that an Indirect Evaporative Cooling (IEC) system can be operated, namely: subtropical hot desert, humid continental, Mediterranean, and hot desert climates. The performance predictions has been tested against experiments and numerical model of the same system, and a detailed investigation of modelling approaches to efficiently and effectively model aforementioned systems has been provided. The calibrated and empirically validated whole building energy model predicted the key performance parameters of the dew point evaporative cooling system with mean error values limited to 4.1%. The highest COP values recorded by experiments and whole building energy simulations were 51.1 and 49, respectively. The whole building energy model proved to better predict the performance of dew point evaporative cooler, when compared to numerical models, by incorporating the building-side parameters into the model. This modelling work paves the way toward detailed investigation of the advanced cooling systems within building context to achieve optimised performance of the system in wide range of buildings and operating conditions.

Keywords: system; energy; evaporative cooling; whole building; building energy; performance

Journal Title: Energy Conversion and Management
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.