LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study on a passive concentrating photovoltaic-membrane distillation integrated system

Photo from wikipedia

Abstract The traditional photovoltaic-thermal desalination systems generally need to consume produced electricity to power their pumps and fans, thus fail to provide users sufficient household electricity. This paper presents a… Click to show full abstract

Abstract The traditional photovoltaic-thermal desalination systems generally need to consume produced electricity to power their pumps and fans, thus fail to provide users sufficient household electricity. This paper presents a concentrating photovoltaic-thermal membrane distillation integrated system, innovatively combining concentrating photovoltaic and membrane distillation. Besides producing electricity and fresh water, it is designed with cultivation chambers to directly use the produced water for growing crops. The system could be fully embedded underground and operating passively when tempered glasses are used as its top transparent cover, which can also serve as pavement. In such a way, it has strong resistance to typhoons and saves land sources as well. Here, the system design scheme is introduced. An experimental setup is developed, during which the structural design and optimization method for the concentrator is given, to verify the system’s feasibility. Mathematical models for the photovoltaic and thermal processes are established and well-validated via testing. The maximal overall efficiency is about 42% under solar radiation of 900 W/m2, in which the system’s electrical and water production efficiency is 10% and 32%, respectively. The system also performs well during the whole-day testing. There is more than 40% of solar energy can be utilized on sunny days.

Keywords: concentrating photovoltaic; system; distillation integrated; membrane distillation

Journal Title: Energy Conversion and Management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.