LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental investigation of the wake characteristics behind twin vertical axis turbines

Photo from wikipedia

Abstract Vertical axis wind and tidal turbines are a promising technology, well suited to harness kinetic energy from highly turbulent environments such as urban areas or rivers. The power density… Click to show full abstract

Abstract Vertical axis wind and tidal turbines are a promising technology, well suited to harness kinetic energy from highly turbulent environments such as urban areas or rivers. The power density per occupied land area of two or three vertical axis rotors deployed in close proximity can notably exceed that of their horizontal axis counterparts. Using acoustic Doppler velocimetry, the three-dimensional wake developed downstream of standalone and twin vertical axis turbines of various shaft-to-shaft distances and rotational direction combinations was characterised in terms of mean velocity and turbulence statistics, with their impact on momentum recovery quantified. Results show that the wake hydrodynamics were more impacted by turbine rotational direction than lateral distance between devices for the range of lateral spacing considered. In the cases with turbines operating in a counter-rotating forward configuration, the wake mostly expanded laterally and attained the largest velocities that exceeded those in the single turbine case, with full momentum recovery at 5 turbine diameters downstream. The wake developed by the counter-rotating backward setup notably extended over the vertical direction, whilst devices rotating in the same direction featured the greatest lateral wake expansion with reduced velocities. Linear wake superposition of the single turbine wake provided a good representation of the mean velocity field behind twin-turbine setups. The presented results indicate that, in the design of twin-turbine arrays moving in counter-rotating forward direction, a lateral spacing of, at least, two turbine diameters should be kept as this allows the kinetic energy in the wake to be fully recovered by five turbine diameters downstream.

Keywords: turbine; direction; axis; twin vertical; wake; vertical axis

Journal Title: Energy Conversion and Management
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.