LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Feasibility study of China's electric power sector transition to zero emissions by 2050

Photo from wikipedia

Abstract The study explores the potential transition of China's electric power sector to zero emissions by 2050. Using a capacity expansion model (CEPRO) with 31 regions, hourly time resolution, and… Click to show full abstract

Abstract The study explores the potential transition of China's electric power sector to zero emissions by 2050. Using a capacity expansion model (CEPRO) with 31 regions, hourly time resolution, and 39 years of historical reanalysis weather data (MERRA-2), we simulate the expansion and operation of the power sector, considering solar and wind energy as the primary source of generation. The results suggest that zero-emissions power generation can be achieved with mostly wind and solar energy and alternative sets of balancing technologies. We show that a high-renewables power system can operate without significant storage and provide a high level of reliability. Besides storage, the balancing can be achieved by a partially flexible load, expansion of power grid, and backup capacity. The four balancing options and the level of reliability of the system are substitutes for one another, making at least storage or backup generation optional. Most importantly, a high-renewables power system is competitive, with the supply-side levelized system cost of electricity as low as 0.2–0.3 CNY/kWh (about 3–4 US cents per kWh) even without consideration of further reductions in the cost of renewables.

Keywords: power sector; power; zero emissions; china electric; electric power

Journal Title: Energy Economics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.