Abstract The use of hydraulic fracturing for shale oil and gas development generates large quantities of flowback and produced (F/P) water as by-products. The current high treatment cost of F/P… Click to show full abstract
Abstract The use of hydraulic fracturing for shale oil and gas development generates large quantities of flowback and produced (F/P) water as by-products. The current high treatment cost of F/P water inhibits development and profitability of shale oil and gas. The Integrated Precipitative Supercritical (IPSC) process, developed at Ohio University, could remediate F/P water produced from hydraulic fracturing with significantly lower costs than current practices. The objective of this paper is to present results of a techno-economic analysis of the IPSC process using AspenĀ® process software and Microsoft Excel. The AspenĀ® model was used to simulate the IPSC process with its output used as input for the cost analysis. Results indicated an average cost of $6.33 per barrel of F/P water treatment with a possible range from $2.93/bbl to $16.03/bbl determined through sensitivity analyses. The results further indicate that the IPSC process is economically competitive compared to existing practices.
               
Click one of the above tabs to view related content.