LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sequencing the features to minimise the non-cutting energy consumption in machining considering the change of spindle rotation speed

Photo from wikipedia

A considerable amount of energy consumed by machine tools is attributable to non-cutting operations, including tool path, tool change, and change of spindle rotation speed. The non-cutting energy consumption of… Click to show full abstract

A considerable amount of energy consumed by machine tools is attributable to non-cutting operations, including tool path, tool change, and change of spindle rotation speed. The non-cutting energy consumption of the machine tool (NCE) is affected by the processing sequence of the features of a specific part (PFS) because the plans of non-cutting operations will vary based on the different PFS. This article aims to understand the NCE between processing a specific feature and its pre- or post-feature, especially the energy consumed during the speed change of the spindle rotation. Based on the developed model, a single objective optimisation problem is introduced that minimises the NCE. Then, Ant Colony Optimisation (ACO) is employed to search for the optimal PFS. A case study is developed to validate the effectiveness of the proposed approach. Two parts with 12 and 15 features are processed on a machining centre. The simulation experiment results show that the optimal or near-optimal PFS can be found. Consequently, 8.70% and 30.42% reductions in NCE are achieved for part A and part B, respectively. Further, the performance of ACO for our specific optimisation problem is discussed and validated based on comparisons with other algorithms.

Keywords: non cutting; spindle rotation; change spindle; energy

Journal Title: Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.