LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An experimental study of the burning characteristics of acetone–butanol–ethanol and diesel blend droplets

Photo from wikipedia

Abstract Acetone–Butanol–Ethanol (ABE), the intermediate product to produce bio-butanol is used as an alternative fuel directly to eliminate needless production costs. In this study, the droplet burning characteristics of neat… Click to show full abstract

Abstract Acetone–Butanol–Ethanol (ABE), the intermediate product to produce bio-butanol is used as an alternative fuel directly to eliminate needless production costs. In this study, the droplet burning characteristics of neat ABE, diesel and ABE-diesel blends (10%, 20%, 30%, 50% of ABE (vol%)) fuels are investigated by the droplet free falling technique under atmospheric pressure. The initial droplet temperature and diameter are about 300 K and 235 μm respectively. The ambient temperature around the flat-flame burner is about 1123 K, and the residual oxygen concentration is 21 vol%. The results show that the addition of ABE not only increases the average burning rate and the ignition delay of droplets, but also reduces soot emissions. Meanwhile, ABE-diesel blends droplets occur micro-explosion at the end of flame because of the large difference in volatility between ABE components and diesel, which distinctly shortens the burning duration of ABE-diesel blends. In addition, with the increase of ABE content, the micro-explosion performance and overall burning rates increase first and then decrease, which indicates the existence of an optimal volume blend ratio around 30% ABE content for ABE-diesel blends that makes explosion performance and overall burning rates reach the top.

Keywords: diesel; burning characteristics; butanol ethanol; acetone butanol; abe diesel

Journal Title: Energy
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.