LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit

Photo from wikipedia

Abstract This paper presents a thermochemical regenerative heat recovery process for utilizing the waste heat of oxy-fuel furnaces, with three significant modifications compared to current state-of-the-art reforming concepts. (I) Experimental… Click to show full abstract

Abstract This paper presents a thermochemical regenerative heat recovery process for utilizing the waste heat of oxy-fuel furnaces, with three significant modifications compared to current state-of-the-art reforming concepts. (I) Experimental tests with a reformer test rig were performed, in order to investigate the bi-reforming of methane into syngas by using water and carbon dioxide with a steam-to-carbon ratio of 0.5. The measured syngas concentrations were compared to calculated equilibrium values and carbon deposits were determined. A methane conversion rate of 95.3% was achieved. (II) Carbon deposits in a regenerator bed are usually burned with purge gases. In contrast to this procedure, oxygen was added to the fuel/exhaust gas mixture in order to cause tri-reforming of methane with a steam-to-carbon ratio of 0.4. The syngas concentrations were compared to equilibrium values and it was found, that tri-reforming significantly reduces carbon formation. A methane conversion rate of 96.7% was achieved. (III) Furthermore, reforming and regeneration cycles were coupled and it was found that the temperature profile within the TCR regenerator bed material varies greatly from that of a common regenerator. Regeneration with water and carbon dioxide was sufficient to eliminate all carbon deposits.

Keywords: carbon; waste heat; recovery process; regeneration; heat recovery; heat

Journal Title: Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.