LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and validation of a single-piston free piston expander-linear generator for a small-scale organic Rankine cycle

Photo from wikipedia

To improve the energy efficiency of internal combustion engines, this study develops a single-piston free piston expander-linear generator (FPE-LG) for a small scale organic Rankine cycle (ORC) in a waste… Click to show full abstract

To improve the energy efficiency of internal combustion engines, this study develops a single-piston free piston expander-linear generator (FPE-LG) for a small scale organic Rankine cycle (ORC) in a waste heat recovery system. The prototype can operate continuously and stably, thereby indicating that the single-piston FPE-LG has a feasible working principle. The operation characteristics of FPE-LG are revealed, and the effects of the intake valve opening time (IVOT) and the exhaust valve opening time (EVOT) on the output performance are investigated. The experimental results reveal that the piston can run at a relatively high velocity near the dead centers, and peak acceleration is typically achieved when the piston arrives at the operation left/right dead centers (OLDC/ORDC). The piston stroke length is decreased significantly as the operating frequency is increased. The peak power output, peak in-cylinder pressure, peak velocity of the free piston, and utilization ratio of the piston stroke (η) are increased as the external load resistance is increased. In addition, η increases with longer IVOT and can reach up to 67.4% when the IVOT is 40 ms. The exhaust pressure decreases as the EVOT is increased, and the power output can be improved by regulating the IVOT rather than the EVOT.

Keywords: piston expander; piston; expander linear; free piston; piston free; single piston

Journal Title: Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.