LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Short term load forecasting based on feature extraction and improved general regression neural network model

Photo from wikipedia

Along with the deregulation of electric power market as well as aggregation of renewable resources, short term load forecasting (STLF) has become more and more momentous. However, it is a… Click to show full abstract

Along with the deregulation of electric power market as well as aggregation of renewable resources, short term load forecasting (STLF) has become more and more momentous. However, it is a hard task due to various influential factors that leads to volatility and instability of the series. Therefore, this paper proposes a hybrid model which combines empirical mode decomposition (EMD), minimal redundancy maximal relevance (mRMR), general regression neural network (GRNN) with fruit fly optimization algorithm (FOA), namely EMD-mRMR-FOA-GRNN. The original load series is firstly decomposed into a quantity of intrinsic mode functions (IMFs) and a residue with different frequency so as to weaken the volatility of the series influenced by complicated factors. Then, mRMR is employed to obtain the best feature set through the correlation analysis between each IMF and the features including day types, temperature, meteorology conditions and so on. Finally, FOA is utilized to optimize the smoothing factor in GRNN. The ultimate forecasted load can be derived from the summation of the predicted results for all IMFs. To validate the proposed technique, load data in Langfang, China are provided. The results demonstrate that EMD-mRMR-FOA-GRNN is a promising approach in terms of STLF.

Keywords: term load; load forecasting; load; short term; regression neural; general regression

Journal Title: Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.