LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression

Photo from wikipedia

Abstract Multi-stage Tesla valves in the reversed flow state can be applied during the hydrogen decompression process between the high pressure hydrogen storage vessel and the fuel cell. Under high-pressure… Click to show full abstract

Abstract Multi-stage Tesla valves in the reversed flow state can be applied during the hydrogen decompression process between the high pressure hydrogen storage vessel and the fuel cell. Under high-pressure turbulent hydrogen flow, severe aerodynamic noise may be caused and large energy loss inside Tesla valves may be generated, which can cause uncomfortable noise in vehicles. In this paper, the valve stage number and the pressure ratio between the inlet and the outlet are analyzed to investigate the possibility of the occurrence of aerodynamic noise and energy loss inside Tesla valves, and Mach number, turbulent dissipation rate, and exergy loss are used and evaluated as the criterion. The results show that both Mach number and exergy loss increase with the increasing of pressure ratio, but with the decrease of valve stage number, Mach number increases and exergy loss decreases. In addition, large turbulent dissipation rate at each valve stage appears near the bifurcation and the confluence between the straight channel and the bend channel of multi-stage Tesla valves. The correlation between the valve stage number, the pressure ratio, and the maximum Mach number is fitted, which can be used to estimate the possibility of the occurrence of aerodynamic noise.

Keywords: number; tesla valves; loss; mach number; stage; energy

Journal Title: Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.