LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity

Photo from wikipedia

Abstract The power-weight ratio is an important feature of a gas turbine used in transportation applications. However, while the ultra-compact combustion mode shows good application prospects, achieving high-efficiency and low-resistance… Click to show full abstract

Abstract The power-weight ratio is an important feature of a gas turbine used in transportation applications. However, while the ultra-compact combustion mode shows good application prospects, achieving high-efficiency and low-resistance combustion in an ultra-compact space at high air velocities remains a major challenge. A new ultra-compact combustion mode was proposed in this paper to further increase the configurable compactness with improvements to the flow and combustion characteristics. The relationships of the flow and combustion characteristics with the combustor configuration were numerically investigated in detail, and the calculation model was verified experimentally. This study focused on the configurable factors of the combustor components related to the major combustion zone, including the mainstream flame holder, the radial cavity, the fuel injector, and the diffusion channel. The results showed that rapid fuel-air blending and high-efficiency combustion were achieved under the condition of an ultra-compact space and a high air injection velocity. The adoption of a streamlined flame holder with a radial cavity and the integration of a simple fuel injector with a flame holder were very effective at simultaneously improving the configurable compactness and combustion characteristics without increasing the flow resistance, and these achievements are significant for improving the power-weight ratio of gas turbines.

Keywords: flame; combustion; gas; combustion characteristics; fuel; flow combustion

Journal Title: Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.