LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and analytic study of a hybrid solar/biomass rural heating system

Photo from wikipedia

Abstract This paper presents a dedicated analytic and experimental study of a hybrid solar/biomass space heating system incorporating a micro-channel solar thermal panels-array, a biomass boiler and a dedicated control… Click to show full abstract

Abstract This paper presents a dedicated analytic and experimental study of a hybrid solar/biomass space heating system incorporating a micro-channel solar thermal panels-array, a biomass boiler and a dedicated control algorithm. This system enables the smart and joint use of solar and biomass energies to provide a comfortable indoor environment. The in-situ testing of the system was undertaken and the data obtained from the testing were analysed using Grubbs method to formulate the experimental thermal efficiency equation for the solar panels-array and the heat conversion factor equation for the combined heat storage/exchanging water tank. The annual energy performance of the hybrid system was investigated using a professional building energy simulation program (EnergyPlus), which can predict the heat load profile of house, the ratio of energy usage from solar/biomass sources and the primary energy/exergy efficiencies. The thermal efficiency of the solar thermal panels-array is in the range of 60%–70%. The heat storage water tank has a heat conversion factor in the range of 0.94–0.98. The heat load index per unit area is 46.86 W/m2 and cumulative heating energy consumption with 100 m2 house is 24.3 GJ during a heating season. The total annual energy demand of the solar/biomass heating system is around 35.91 GJ, of which the sun provides 63.31% and biomass provides 36.69%. The primary energy and exergy efficiencies of the solar/biomass rural heating system are 67.66% and 16.17% respectively. However, when the total input electrical exergy is traced back to its primary energy source, i.e. a coal-fired power plant, the exergy efficiency falls from 23.14% to 7.27%. Compared to the traditional primary energy supply system, the energy conversion effect and effective utilization degree of the solar/biomass heating system are relatively higher.

Keywords: heating system; system; energy; biomass; solar biomass

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.