LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends

Photo from wikipedia

Abstract In this study, the organic fraction of municipal solid waste (Org-MSW) was blended with high-volatile coal (HVC) in proportions of 25/75%, 50/50%, 75/25% by weight. Pyrolysis of these mixtures… Click to show full abstract

Abstract In this study, the organic fraction of municipal solid waste (Org-MSW) was blended with high-volatile coal (HVC) in proportions of 25/75%, 50/50%, 75/25% by weight. Pyrolysis of these mixtures was then investigated in a thermogravimetric analyzer (TGA) and a horizontal tube furnace under a nitrogen environment. The mass loss rate of samples, differential thermogravimetry (DTG) curves and kinetic analysis of the samples were compared for both blended and non-blended samples. Higher gas yields were seen with increasing pyrolysis temperature for both samples. In addition, the kinetic analysis indicated that the apparent activation energy values of org-MSW samples varied from 535 to 5284 kJ/kmol (over the temperature range of 100–887 °C), while the values for HVC were 247–962 kJ/kmol. The activation energy for HVC varied with temperature and the highest value of 2036 kJ/kmol was found in the temperature range of 336–490 °C. Comparable results were obtained between the TGA and fixed bed tests on the residual char fraction. The findings of this work will be very important in developing a co-firing technology for solid waste residuals and coal for energy production.

Keywords: fraction municipal; pyrolysis; organic fraction; fraction; solid waste

Journal Title: Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.